Silicon The crystal has the diamond structure, so the first Brillouin zone is the
truncated octahedron appropriate to a face-centered cubic Bravais lattice. The con-
duction band has six symmetry-related minima at points in the {100) directions,
about 80 percent of the way to the zone boundary (Figure 28.5). By symmetry each

Figure 28.5 S

Constant-energy surfaces near the conduction band minima in
silicon. There are six symmetry-related ellipsoidal pockets. The
long axes are directed along (100) directions. 7N

of the six ellipsoids must be an ellipsoid of revolution about a cube axis. They are
quite cigar-shaped, being elongated along the cube axis. In terms of the free electron
mass m, the effective mass along the axis (the longitudinal effective mass) 1s m; ~
1.0m while the effective masses perpendicular to the axis (the transverse effective mass)
are my ~ 0.2m. There are two degenerate valence band maxima, both located at
k = 0, which are spherically symmetric to the extent that the ellipsoidal expansion
is valid, with masses of 0.49m and 0.16m (Figure 28.6).



Figure 28.6

Energy bands in silicon. Note the conduction band minimum along
[100] that gives rise to the ellipsoids of Figure 28.5. The valence
band maximum occurs at k = 0, where two degenerate bands with
different curvatures meet, giving rise to “light holes” and “heavy
holes.” Note also, the third band, only 0.044 eV below the valence
band maximum. This band is separated from the other two only
by spin-orbit coupling. At temperatures on the order of room
temperature (kT = 0.025 eV) it too may be a significant source of
carriers. (From C. A. Hogarth, ed., Materials Used in Semiconductor
Devices, Interscience, New York, 1965.)
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Germanium The crystal structure and Brillouin zone are as in silicon. However, the
conduction band minima now occur at the zone boundaries in the (111) directions.
Minima on parallel hexagonal faces of the zone represent the same physical levels,
so there are four symmetry-related conduction band minima. The ellipsoidal constant
energy surfaces are ellipsoids of revolution elongated along the (111) directions,
with effective masses m; ~ 1.6m, and my ~ 0.08m (Figure 28.7). There are again two

degenerate valence bands, both with maxima at k = 0, which are spherically sym-

metric in the quadratic approximation with effective masses of 0.28m and 0.044m
(Figure 28.8).

Figure 28.7

Constant-energy surfaces near the conduction band minima in germa-
nium. There are eight symmetry-related half ellipsoids with long axes
along (111) directions centered on the midpoints of the hexagonal
zone faces. With a suitable choice of primitive cell in k-space these can
be represented as four ellipsoids, the half ellipsoids on opposite faces

being joined together by translations through suitable reciprocal
lattice vectors.




minimum along [111] at the zone boundary that gives rise to
the four ellipsoidal pockets of Figure 28.7. The valence band
maximum, as in silicon, is at k = 0, where two degenerate
7L bands with different curvatures meet, giving rise to two pockets
0.8 of holes with distinct effective masses. (From C. A. Hogarth,
0.67 ed., Materials Used in Semiconductor Devices, Interscience,
New York, 1965.)
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Indium antimonide This compound, which has the zincblende structure, is interesting
because all valence band maxima and conduction band minima are at k = 0. The en-
ergy surfaces are therefore spherical. The conduction band effective mass is very small,
m* ~ 0.015m. Information on the valence band masses is less unambiguous, but there
appear to be two spherical pockets about k = 0, one with an effective mass of about
0.2m (heavy holes) and another with effective mass of about 0.015m (light holes).



CYCLOTRON RESONANCE

The effective masses discussed above are measured by the technique of cyclotron
resonance. Consider an electron close enough to the bottom of the conduction band
(or top of the valence band) for the quadratic expansion (28.2) to be valid. In the

presence of a magnetic field H the semiclassical equations of motion (12.32) and
(12.33) imply that the velocity v(k) obeys the single set of equations

dv e

M_—- = T — , .
—=F-vxH (28.4)

Ina constant uniform field (taken along the z-axis) it is not difficult to show (Problem 1)
that (28.4) has an oscillatory solution

v = Re voe ™, (28.5)
provided that
eH

where m*, the “cyclotron effective mass,” is given by

det M \'/?
* —
m ( M. ) : (28.7)




This result can also be written in terms of the eigenvalues and principal axes of the
mass tensor as (Problem 1):

mimyoms
\/H121111 + szfnz + H32m3 ( )

where the H; are the components along the three principal axes of a unit vector
parallel to the field.

For a given o, m* varies with H

Note that the cyclotron frequency depends, for a given ellipsoid, on the orientation
of the magnetic field with respect to that ellipsoid, but not on the initial wave vector
or energy of the electron. Thus for a given orientation of the crystal with respect to
the field, all electrons in a given ellipsoidal pocket of conduction band electrons
(and, by the same token, all holes in a given ellipsoidal pocket of valence band holes)
precess at a frequency entirely determined by the effective mass tensor describing
that pocket. There will therefore be a small number of distinct cyclotron frequencies.
By noting how these resonant frequencies shift as the orientation of the magnetic
field is varied, one can extract from (28.8) the kind of information we quoted above.




To observe cyclotron resonance it is essential that the cyclotron fre-quency (28.6)

be larger than or comparable to the collision frequency. As in the case of metals,

this generally requires working with very pure samples at very low temperatures,
to reduce both impurity scattering and phonon scattering to a minimum. Under
such conditions the electrical conductivity of a semiconductor will be so small that
(in contrast to the case of a metal (page 278)) the driving electromagnetic field can
penetrate far enough into the sample to excite the resonance without any difficulties
associated with a skin depth. On the other hand, under such conditions of low
temperatures and purity the number of carriers available in thermal equilibrium
to participate in the resonance may well be so small that carriers will have to be
created by other means—such as photoexcitation. Some typical cyclotron resonance
data are shown in Figure 28.9.
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Figure 28.9

Typical cyclotron resonance signals in (a) germanium and (b) silicon. The field lies in a (110)

plane and makes an angle with the [001] axis of 60° (Ge) and 30° (Si). (From G. Dresselhaus et al
Phys. Rev. 98, 368 (1955).)




Ashroft & Mermin, p. 575-511.

Extrinsic Case: Some General Features

If impurities contribute a significant fraction of the conduction band electrons and/or
valence band holes, one speaks of an “extrinsic semiconductor.” Because of these

FT Figure 28.10
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added sources of carriers the density of conduction band electrons need no longer
be equal to the density of valence band holes:

n,— p, = An # 0. (28.23)

Since the law of mass action Eq. (28.17) holds regardless of the importance of
impurities, we can use the definition (28.19) of ny(T) to write quite generally,

nepy = ni’. (28.24)

Equations (28.24) and (28.23) permit one to express the carrier densities in the extrinsic
case in terms of their intrinsic values »; and the deviation An from intrinsic behavior:

7 1 1/2
(o= e + o]t as25

The quantity An/n;, which measures the importance of the impurities as a source
of carriers, can be given a particularly simple expression as a function of chemical
potential y, if we note that Egs. (28.12) have the form!#

n, = U rp.. p = e PRy (28.26)
Therefore

A
7" — 2sinh B(u — ). (28.27)

1




We have noted that if the energy gap E, is large compared with kzT, then the
intrinsic chemical potential y; will satisfy the assumption (28.10) of nondegeneracy.
But Eq. (28.27) requires that if y; is far from &_ or &, on the scale of k3T, then u must be
as well, unless An is many orders of magnitude larger than the intrinsic carrier density
n;. Thus the nondegeneracy assumption underlying the derivation of (28.27) is valid
when E; >» kgT, unless we are in a region of extreme extrinsic behavior.

Note also that when An is large compared with n;, then Eq. (28.25) asserts that
the density of one carrier type is essentially equal to An, while that of the other type
is smaller by a factor of order (n;/An)?. Thus when impurities do provide the major
source of carriers, one of the two carrier types will be dominant. An extrinsic semi-
conductor is called “n-type” or “p-type” according to whether the dominant carriers
are electrons or holes.

To complete the specification of the carrier densities in extrinsic semiconductors
one must determine An or p. To do this we must examine the nature of the electronic
levels introduced by the impurities and the statistical mechanics of the occupation
of these levels in thermal equilibrium.



Ashroft & Mermin, p. 581-584.

POPULATION OF IMPURITY LEVELS IN THERMAL EQUILIBRIUM

To assess the extent to which carriers can be thermally excited from impurity levels,
we must compute the mean number of electrons in the levels at a given temperature
and chemical potential. We assume that the density of impurities is low enough
that the interaction of electrons (or holes) bound at different impurity sites is negligible.
We may then calculate the .number density of electrons n, (or holes p,) bound to
donor (or acceptor) sites by simply multiplying by the density of donors N, (or
acceptors N,) the mean number of electrons (or holes) there would be if there were
only a single impurity. For simplicity we assume that the impurity introduces only
a single one-electron orbital level.?! We calculate its mean occupancy as follows:

Donor Level | If we ignored electron-electron interactions the level could either be

empty, could contain one electron of either spin, or two electrons of opposite spins.
However, the Coulomb repulsion of two localized electrons raises the energy of the
doubly occupied level so high that double occupation is essentially prohibited.
Quite generally, the mean number of electrons in a system in thermal equilibrium
is given by:

Y. N ARy
n,=<N>N, (n)y = 5 EEN (28.30)




where the sum is over all states of the system, E; and N ;, are the energy and number
of electrons in state j, and u is the chemical potential. In the present case the system
is a single impurity with just three states: one with no electrons present which makes

no contribution to the energy, and two with a single electron present of energy &,.
Therefore (28.30) gives

2e—ﬂ(8d—u) 1
Y = T = T (28.31)
so that??
- <N> N N
ny=<N>N, " = Lwa T (28.32)

Acceptor Level | In contrast to a donor le.vel, an acceptor level, when viewed as an
electronic level, can be singly or doubly occupied, but not empty. 1his 1s easily seen

from the hole point of view. An acceptor impurity can be regarded as a fixed, negatively
charged attractive center superimposed on an unaltered host atom. This additional
charge —e can weakly bind one hole (corresponding to one electron being in the

acceptor level). The binding energy of the hole is §, — &,, and when the hole is
“lonized” an additional electron moves into the acceptor level. However, the con-
figuration in which no electrons are in the acceptor level corresponds to two holes
being localized in the presence of the acceptor impurity, which has a very high
energy due to the mutual Coulomb repulsion of the holes.??



Bearing this in mind, we can calculate the mean number of electrons at an acceptor
level from (28.30) by noting that the state with no electrons is now prohibited, while
the two-electron state has an energy that is §, higher than the two one-electron states.
Therefore

= 2ePr + ¢ PEa—20 T IG5 L |’ (28.33)

The mean number of holes in the acceptor level is the difference between the
maximum number of electrons the level can hold (two) and the actual mean number
of electrons in the level ({n)): {p) = 2 — {(n), and therefore p, = N,{p) is given by

Pa = I06=%) 1 1

(28.34)




THERMAL EQUILIBRIUM CARRIER DENSITIES OF IMPURE
SEMICONDUCTORS

Consider a semiconductor doped with N, donor impurities and N, acceptor impurities
per unit volume. To determine the carrier densities we must generalize the constraint
n. = p, (Eq. (28.18)) that enabled us to find these densities in the intrinsic (pure)
case. We can do this by first considering the electronic configuration at 7 = 0.
Suppose N; = N,. (The case N; < N, is equally straightforward and leads to the
same result (28.35).) Then in a unit volume of semiconductor N, of the N, electrons
supplied by the donor impurities can drop from the donor levels into the acceptor
levels.>* This gives a ground-state electronic configuration in which the valence
band and acceptor levels are filled, N, — N, of the donor levels are filled, and the
conduction band levels are empty. In thermal equilibrium at temperature T the
electrons wil be redistributed among these levels, but since their total number remains
the same, the number of electrons in conduction band or donor levels, n, + n,; must
exceed its value at T= 0, N; — N, by precisely the number of empty levels (i.e.,
holes), p, + p. 1n the valence band and acceptor levels:

n.+n;=N;,— N, + p, + p, (28.35)




This equation, together with the explicit forms we have found for n,, p,, n,, and n,
as functions of p and T, permits one to find u as a function of T, and therefore to
find the thermal equilibrium carrier densities at any temperature. A general analysis
is rather complicated, and we consider here only a particularly simple and important
case:

Suppose that

s — U > kgT,
U — 8 » kgT. (28.36)

Since &; and &, are close to the edges of the gap, this is only slightly more restrictive
than the nondegeneracy assumption (28.10). Condition (28.36) and the expressions
(28.32) and (28.34) for n,; and p, insure that thermal excitation fully “jonizes” the
impurities, leaving only a negligible fraction with bound electrons or holes: n; « N,

P. < N, Equation (28.35) therefore becomes
An =n, — p,= N, — N, (28.37)

so Eqgs. (28.25) and (28.27) now give the carrier densities and chemical potential as
explicit functions of the temperature alone:

! 1
{ZC} =5 [(NVg —-N* +an’ ] + 3 [Na — N.] (28.38)
Na = Na _ 5 ginh pu — w). (28.39)

n;



If the gap is large compared with kzT, the assumption (28.36) we began with

should remain valid unless u is quite far from y; on the scale of kzT. According to
Eq. (28.39), this will only happen when |N; — N,| is several orders of magnitude
greater than the intrinsic carrier density n;. Therefore Eq. (28.38) correctly describes
the transition from predominantly intrinsic behavior (n; > |N a — N,|) well into the
region of predominantly extrinsic behavior (n; « |N; — N,|). Expanding (28.38),
we find that at low impurity concentrations the corrections to the purely intrinsic

carrier densities are

Intrinsic

Py

{nc} ~ h; i %(Nd - Na),

(28.40)

while for a considerable range of carrier concentrations in the extrinsic regime.

Extrinsic

n. ~ N; — N,

2

L Nd> Na;

(28.41)



Equation (28.41) is quite important in the theory of semiconducting devices
(Chapter 29). It asserts that the net excess of electrons (or holes) N, — N. introduced
by the impurities is almost entirely donated to the conduction (or valence) band:

the other band has the very much smaller carrier density n;?/(N; — N,), as required

by the law of mass action, (28.24).

If the temperature is too low (or the impurity concentration too high), condition
(28.36) eventually fails to hold, and either n,/N, or p,/N, (but not both) ceases to be
negligible,i.e., one of the impurity types is no longer fully ionized by thermal excitation.
As a result, the dominant carrier density declines with decreasing temperature
(Figure 28.13).2%
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IMPURITY BAND CONDUCTION

As the temperature approaches zero, so does the fraction of ionized impurities, and
therefore also the density of carriers in the conduction or valence bands. Nevertheless,
some small residual conductivity is observed even at the lowest temperatures. This
is because the wave function of an electron (or hole) bound to an impurity site has
considerable spatial extent, and therefore the overlap of wave functions at different
impurity sites is possible even at fairly low concentrations. When this overlap is
not negligible, it is possible for an electron to tunnel from one site to another. The

resulting transport of charge is known as “impurity band conduction.”

The use of the term “band” in this context is based on an analogy with the tight-
binding method (Chapter 10), which shows that a set of atomic levels with a single
energy can broaden into a band of energies, when wave function overlap is taken
into account. The impurities, however, are usually not situated at the sites of a Bravais
lattice, and one must therefore be cautious in attributing to the impurity “bands”
features associated with electronic bands in periodic potentials.?®




